Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative deep learning-enabled ultra-large field-of-view lens-free imaging (2403.07786v3)

Published 12 Mar 2024 in physics.optics and cs.CV

Abstract: Advancements in high-throughput biomedical applications necessitate real-time, large field-of-view (FOV) imaging capabilities. Conventional lens-free imaging (LFI) systems, while addressing the limitations of physical lenses, have been constrained by dynamic, hard-to-model optical fields, resulting in a limited one-shot FOV of approximately 20 $mm2$. This restriction has been a major bottleneck in applications like live-cell imaging and automation of microfluidic systems for biomedical research. Here, we present a deep-learning(DL)-based imaging framework - GenLFI - leveraging generative AI for holographic image reconstruction. We demonstrate that GenLFI can achieve a real-time FOV over 550 $mm2$, surpassing the current LFI system by more than 20-fold, and even larger than the world's largest confocal microscope by 1.76 times. The resolution is at the sub-pixel level of 5.52 $\mu m$, without the need for a shifting light source. The unsupervised learning-based reconstruction does not require optical field modeling, making imaging dynamic 3D samples (e.g., droplet-based microfluidics and 3D cell models) in complex optical fields possible. This GenLFI framework unlocks the potential of LFI systems, offering a robust tool to tackle new frontiers in high-throughput biomedical applications such as drug discovery.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. Coskun, A.F., Su, T.-W., Ozcan, A.: Wide field-of-view lens-free fluorescent imaging on a chip 10(7), 824 https://doi.org/10.1039/b926561a . Publisher: NIH Public Access. Accessed 2023-10-31 [3] Peng, Y., Sun, Q., Dun, X., Wetzstein, G., Heidrich, W., Heide, F.: Learned large field-of-view imaging with thin-plate optics 38(6), 1–14 https://doi.org/10.1145/3355089.3356526 . Accessed 2023-10-02 [4] Scherrer, J.R., Lynch, G.F., Zhang, J.J., Fee, M.S.: An optical design enabling lightweight and large field-of-view head-mounted microscopes 20(4), 546–549 https://doi.org/10.1038/s41592-023-01806-1 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-10-06 [5] Ji, J., Xie, H., Yang, L.: Learned large field-of-view imager with a simple spherical optical module, 128918 https://doi.org/10.1016/j.optcom.2022.128918 . Accessed 2022-09-03 [6] Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, Y., Sun, Q., Dun, X., Wetzstein, G., Heidrich, W., Heide, F.: Learned large field-of-view imaging with thin-plate optics 38(6), 1–14 https://doi.org/10.1145/3355089.3356526 . Accessed 2023-10-02 [4] Scherrer, J.R., Lynch, G.F., Zhang, J.J., Fee, M.S.: An optical design enabling lightweight and large field-of-view head-mounted microscopes 20(4), 546–549 https://doi.org/10.1038/s41592-023-01806-1 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-10-06 [5] Ji, J., Xie, H., Yang, L.: Learned large field-of-view imager with a simple spherical optical module, 128918 https://doi.org/10.1016/j.optcom.2022.128918 . Accessed 2022-09-03 [6] Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Scherrer, J.R., Lynch, G.F., Zhang, J.J., Fee, M.S.: An optical design enabling lightweight and large field-of-view head-mounted microscopes 20(4), 546–549 https://doi.org/10.1038/s41592-023-01806-1 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-10-06 [5] Ji, J., Xie, H., Yang, L.: Learned large field-of-view imager with a simple spherical optical module, 128918 https://doi.org/10.1016/j.optcom.2022.128918 . Accessed 2022-09-03 [6] Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ji, J., Xie, H., Yang, L.: Learned large field-of-view imager with a simple spherical optical module, 128918 https://doi.org/10.1016/j.optcom.2022.128918 . Accessed 2022-09-03 [6] Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  2. Peng, Y., Sun, Q., Dun, X., Wetzstein, G., Heidrich, W., Heide, F.: Learned large field-of-view imaging with thin-plate optics 38(6), 1–14 https://doi.org/10.1145/3355089.3356526 . Accessed 2023-10-02 [4] Scherrer, J.R., Lynch, G.F., Zhang, J.J., Fee, M.S.: An optical design enabling lightweight and large field-of-view head-mounted microscopes 20(4), 546–549 https://doi.org/10.1038/s41592-023-01806-1 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-10-06 [5] Ji, J., Xie, H., Yang, L.: Learned large field-of-view imager with a simple spherical optical module, 128918 https://doi.org/10.1016/j.optcom.2022.128918 . Accessed 2022-09-03 [6] Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Scherrer, J.R., Lynch, G.F., Zhang, J.J., Fee, M.S.: An optical design enabling lightweight and large field-of-view head-mounted microscopes 20(4), 546–549 https://doi.org/10.1038/s41592-023-01806-1 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-10-06 [5] Ji, J., Xie, H., Yang, L.: Learned large field-of-view imager with a simple spherical optical module, 128918 https://doi.org/10.1016/j.optcom.2022.128918 . Accessed 2022-09-03 [6] Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ji, J., Xie, H., Yang, L.: Learned large field-of-view imager with a simple spherical optical module, 128918 https://doi.org/10.1016/j.optcom.2022.128918 . Accessed 2022-09-03 [6] Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  3. Scherrer, J.R., Lynch, G.F., Zhang, J.J., Fee, M.S.: An optical design enabling lightweight and large field-of-view head-mounted microscopes 20(4), 546–549 https://doi.org/10.1038/s41592-023-01806-1 . Number: 4 Publisher: Nature Publishing Group. Accessed 2023-10-06 [5] Ji, J., Xie, H., Yang, L.: Learned large field-of-view imager with a simple spherical optical module, 128918 https://doi.org/10.1016/j.optcom.2022.128918 . Accessed 2022-09-03 [6] Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ji, J., Xie, H., Yang, L.: Learned large field-of-view imager with a simple spherical optical module, 128918 https://doi.org/10.1016/j.optcom.2022.128918 . Accessed 2022-09-03 [6] Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  4. Ji, J., Xie, H., Yang, L.: Learned large field-of-view imager with a simple spherical optical module, 128918 https://doi.org/10.1016/j.optcom.2022.128918 . Accessed 2022-09-03 [6] Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  5. Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects 9(7), 686–698 https://doi.org/10.1016/S0031-8914(42)80035-X . Accessed 2023-12-19 [7] Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  6. Menzies, S.W., Ingvar, C., McCarthy, W.H.: A sensitivity and specificity analysis of the surface microscopy features of invasive melanoma 6(1), 55 https://doi.org/10.1097/00008390-199602000-00008 . Accessed 2023-12-19 [8] Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  7. Sensitivity and Specificity of Epiluminescence Microscopy: Evaluation on a Sample of 2731 Excised Cutaneous Pigmented Lesions | British Journal of Dermatology | Oxford Academic. https://academic.oup.com/bjd/article/142/5/893/6689918?login=true Accessed 2023-12-19 [9] Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  8. Agard, D.A.: Optical sectioning microscopy: Cellular architecture in three dimensions 13(1), 191–219 https://doi.org/10.1146/annurev.bb.13.060184.001203 . _eprint: https://doi.org/10.1146/annurev.bb.13.060184.001203. Accessed 2023-12-19 [10] Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  9. Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy 2(12), 920–931 https://doi.org/10.1038/nmeth815 . Accessed 2023-12-19 [11] Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  10. Nehme, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Deep-STORM: super-resolution single-molecule microscopy by deep learning 5(4), 458 https://doi.org/10.1364/OPTICA.5.000458 1801.09631 [physics]. Accessed 2023-12-22 [12] Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  11. Choong, H.Y., Kumar, S., Van Gool, L.: Quantum Annealing for Single Image Super-Resolution. arXiv. http://arxiv.org/abs/2304.08924 Accessed 2023-04-24 [13] Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  12. Wang, H., Zhang, Y., Qin, C., Gool, L.V., Fu, Y.: Global aligned structured sparsity learning for efficient image super-resolution, 1–16 https://doi.org/10.1109/TPAMI.2023.3268675 . Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence [14] Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  13. Ouyang, W., Aristov, A., Lelek, M., Hao, X., Zimmer, C.: Deep learning massively accelerates super-resolution localization microscopy 36(5), 460–468 https://doi.org/10.1038/nbt.4106 . Number: 5 Publisher: Nature Publishing Group. Accessed 2023-12-22 [15] Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  14. Qiao, C., Li, D., Guo, Y., Liu, C., Jiang, T., Dai, Q., Li, D.: Evaluation and development of deep neural networks for image super-resolution in optical microscopy 18(2), 194–202 https://doi.org/10.1038/s41592-020-01048-5 [16] AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  15. AX / AX R With NSPARC. Nikon Instruments Inc. https://www.microscope.healthcare.nikon.com/products/confocal-microscopes/ax Accessed 2024-01-23 [17] Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  16. Huang, L., Chen, H., Liu, T., Ozcan, A.: Self-supervised learning of hologram reconstruction using physics consistency 5(8), 895–907 https://doi.org/10.1038/s42256-023-00704-7 . Number: 8 Publisher: Nature Publishing Group. Accessed 2023-12-19 [18] Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  17. Wang, H., Lyu, M., Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction 26(18), 22603–22614 https://doi.org/10.1364/OE.26.022603 . Publisher: Optica Publishing Group. Accessed 2022-08-14 [19] Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  18. Jayapala, M., Stahl, R., Vanmeerbeeck, G., Lambrechts, A.: Lens-free holographic imaging of microscopic objects using photonic structures and CMOS imagers, 4 [20] Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  19. Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope 6, 697–710 https://doi.org/10.1109/TCI.2020.2964247 . Accessed 2023-12-19 [21] Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  20. Ozcan, A., Rivenson, Y., Luo, Y., Huang, L.: Single-Shot Autofocusing of Microscopy Images Using Deep Learning. https://www.freepatentsonline.com/20230085827.html Accessed 2023-04-13 [22] Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  21. Barkley, S., Dimiduk, T.G., Fung, J., Kaz, D.M., Manoharan, V.N., McGorty, R., Perry, R.W., Wang, A.: Holographic Microscopy with Python and HoloPy. arXiv. https://doi.org/10.48550/arXiv.1806.00058 . http://arxiv.org/abs/1806.00058 Accessed 2023-12-19 [23] Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  22. Castañeda, R., Trujillo, C., Doblas, A.: pyDHM: A python library for applications in digital holographic microscopy 17(10), 0275818 https://doi.org/10.1371/journal.pone.0275818 . Publisher: Public Library of Science. Accessed 2022-11-29 [24] Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  23. Luo, Z., Yurt, A., Stahl, R., Carlon, M.S., Ramalho, A.S., Vermeulen, F., Lambrechts, A., Braeken, D., Lagae, L.: Fast compressive lens-free tomography for 3d biological cell culture imaging 28(18), 26935 https://doi.org/10.1364/OE.393492 . Accessed 2022-06-22 [25] Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  24. Chang, C., Dai, B., Zhu, D., Li, J., Xia, J., Zhang, D., Hou, L., Zhuang, S.: From picture to 3d holography: End-to-end learning of real-time 3d photorealistic hologram generation from 2d image input https://doi.org/10.1364/OL.478976 . Accessed 2023-01-10 [26] Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  25. Isikman, S.O., Bishara, W., Mudanyali, O., Sencan, I., Su, T.-W., Tseng, D., Yaglidere, O., Sikora, U., Ozcan, A.: Lensfree on-chip microscopy and tomography for bio-medical applications 18(3), 1059–1072 https://doi.org/10.1109/JSTQE.2011.2161460 . Accessed 2023-12-19 [27] Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  26. Greenbaum, A., Luo, W., Su, T.-W., Göröcs, Z., Xue, L., Isikman, S.O., Coskun, A.F., Mudanyali, O., Ozcan, A.: Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy 9(9), 889–895 https://doi.org/10.1038/nmeth.2114 . Accessed 2024-01-19 [28] Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  27. Chen, H., Huang, L., Liu, T., Ozcan, A.: eFIN: Enhanced Fourier Imager Network for generalizable autofocusing and pixel super-resolution in holographic imaging. arXiv. http://arxiv.org/abs/2301.03162 Accessed 2023-01-12 [29] Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  28. Chen, H., Huang, L., Liu, T., Ozcan, A.: Deep learning-based hologram reconstruction with superior external generalization (conference presentation). In: Quantitative Phase Imaging IX, vol. PC12389, p. 123890. SPIE. https://doi.org/10.1117/12.2648180 Luo [2021] Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  29. Luo, Z.: Advanced lens-free imaging techniques for complex cell structures and organoids. Phd thesis, KU Leuven (January 2021). LIRIAS3344173, Available at https://kuleuven.limo.libis.be/ [31] Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  30. Kulesa, A., Kehe, J., Hurtado, J.E., Tawde, P., Blainey, P.C.: Combinatorial drug discovery in nanoliter droplets 115(26), 6685–6690 https://doi.org/10.1073/pnas.1802233115 . Accessed 2022-09-21 [32] Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  31. Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W., Jin, D., Fei, P.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network 10(3), 1044–1063 https://doi.org/10.1364/BOE.10.001044 30891329. Accessed 2024-02-05 [33] Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  32. Hussain, S., Anees, A., Das, A., Nguyen, B.P., Marzuki, M., Lin, S., Wright, G., Singhal, A.: High-content image generation for drug discovery using generative adversarial networks 132, 353–363 https://doi.org/10.1016/j.neunet.2020.09.007 . Accessed 2024-02-05 [34] Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  33. Huang, K., Matsumura, H., Zhao, Y., Herbig, M., Yuan, D., Mineharu, Y., Harmon, J., Findinier, J., Yamagishi, M., Ohnuki, S., Nitta, N., Grossman, A.R., Ohya, Y., Mikami, H., Isozaki, A., Goda, K.: Deep imaging flow cytometry 22(5), 876–889 https://doi.org/10.1039/D1LC01043C . Accessed 2022-06-15 [35] Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  34. Bouchard, C., Wiesner, T., Deschênes, A., Bilodeau, A., Turcotte, B., Gagné, C., Lavoie-Cardinal, F.: Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition 5(8), 830–844 https://doi.org/10.1038/s42256-023-00689-3 . Accessed 2024-02-05 [36] Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  35. Lee, C., Song, G., Kim, H., Ye, J.C., Jang, M.: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data 5(1), 35–45 https://doi.org/10.1038/s42256-022-00584-3 . Accessed 2024-02-12 Ronneberger et al. [2015] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  36. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241. Springer, Cham (2015) [38] Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  37. Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D., Ozcan, A.: Phase recovery and holographic image reconstruction using deep learning in neural networks 7(2), 17141–17141 https://doi.org/10.1038/lsa.2017.141 . Accessed 2024-01-22 Barbastathis et al. [2019] Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  38. Barbastathis, G., Ozcan, A., Situ, G.: On the use of deep learning for computational imaging. Optica 6(8), 921–943 (2019) https://doi.org/10.1364/OPTICA.6.000921 [40] Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  39. Zhang, X., Sheng, Z., Shen, H.-L.: FocusNet: Classifying better by focusing on confusing classes 129, 108709 https://doi.org/10.1016/j.patcog.2022.108709 . Accessed 2023-02-01 [41] Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  40. Ozcan, A., Demirci, U.: Ultra wide-field lens-free monitoring of cells on-chip 8(1), 98–106 https://doi.org/10.1039/b713695a [42] Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  41. Serabyn, E., Liewer, K., Wallace, J.K.: Resolution optimization of an off-axis lensless digital holographic microscope 57(1), 172–180 https://doi.org/10.1364/AO.57.00A172 . Accessed 2024-02-05 [43] Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  42. Lens-Free Imaging: Compact, Scalable, High-Res | Imec. https://www.imec-int.com/en/expertise/health-technologies/lens-free-imaging Accessed 2024-01-30 [44] Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  43. Luo, W., Zhang, Y., Feizi, A., Göröcs, Z., Ozcan, A.: Pixel super-resolution using wavelength scanning 5(4), 16060–16060 https://doi.org/10.1038/lsa.2016.60 . Accessed 2024-02-02 [45] Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  44. Luo, Z., Yurt, A., Stahl, R., Lambrechts, A., Reumers, V., Braeken, D., Lagae, L.: Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks 27(10), 13581–13595 https://doi.org/10.1364/OE.27.013581 . Accessed 2024-02-02 [46] Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  45. Kim, J., Song, S., Kim, H., Kim, B., Park, M., Oh, S.J., Kim, D., Cense, B., Huh, Y.-m., Lee, J.Y., Joo, C.: Ptychographic lens-less birefringence microscopy using a mask-modulated polarization image sensor 13(1), 19263 https://doi.org/10.1038/s41598-023-46496-z . Accessed 2024-02-02 [47] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  46. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE. https://doi.org/10.1109/CVPR.2016.90 . http://ieeexplore.ieee.org/document/7780459/ Accessed 2023-12-19 Ren et al. [2021] Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  47. Ren, Y., Wu, J., Xiao, X., Yang, J.: Online multi-granularity distillation for gan compression. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6773–6783. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/ICCV48922.2021.00672 . https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00672 [49] Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  48. Nan, L., Zhang, H., Weitz, D.A., Shum, H.C.: Development and future of droplet microfluidics https://doi.org/10.1039/D3LC00729D . Accessed 2024-01-23 [50] Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  49. Weber, L., Schenk, D.: Automatische zusammenführung zertrennter konstruktionspläne von wasserbauwerken https://doi.org/10.1002/bate.202200010 . Accessed 2024-02-05 [51] 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  50. 3D Spheroids | 3D Spheroid Cell Culture Models | Corning. https://www.corning.com/worldwide/en/products/life-sciences/applications/cell-culture/3D-cell-culture/spheroid-models.html Accessed 2024-02-14 [52] Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  51. Berdeu, A., Flasseur, O., Méès, L., Denis, L., Momey, F., Olivier, T., Grosjean, N., Fournier, C.: Reconstruction of in-line holograms: combining model-based and regularized inversion 27(10), 14951–14968 https://doi.org/10.1364/OE.27.014951 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [53] Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  52. Denis, L., Lorenz, D., Thiébaut, E., Fournier, C., Trede, D.: Inline hologram reconstruction with sparsity constraints 34(22), 3475–3477 https://doi.org/10.1364/OL.34.003475 . Publisher: Optica Publishing Group. Accessed 2023-12-19 [54] Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  53. Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2006.11239 Accessed 2022-10-06 [55] Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  54. Zhao, M., Bao, F., Li, C., Zhu, J.: EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations. arXiv. https://doi.org/10.48550/arXiv.2207.06635 . http://arxiv.org/abs/2207.06635 Accessed 2022-11-11 [56] Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  55. Sasaki, H., Willcocks, C.G., Breckon, T.P.: UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models. arXiv. http://arxiv.org/abs/2104.05358 Accessed 2023-02-10 [57] Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  56. Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E.A., Nie, W., Anandkumar, A.: I22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTSB: Image-to-Image Schrödinger Bridge. arXiv. https://doi.org/10.48550/arXiv.2302.05872 . http://arxiv.org/abs/2302.05872 Accessed 2023-04-11 [58] Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  57. Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4109–4118. IEEE. https://doi.org/10.1109/CVPR.2018.00432 . https://ieeexplore.ieee.org/document/8578530/ Accessed 2024-02-08 [59] Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  58. Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., Efros, A.A.: Sequential Modeling Enables Scalable Learning for Large Vision Models. https://doi.org/10.48550/arXiv.2312.00785 . http://arxiv.org/abs/2312.00785 Accessed 2024-02-08 [60] Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  59. Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the Graphcore IPU Architecture Via Microbenchmarking. http://arxiv.org/abs/1912.03413 Accessed 2024-02-11 [61] Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  60. Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUsfor Cosmology Applications. http://arxiv.org/abs/2106.02465 Accessed 2024-02-11 [62] Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  61. Peng, H., Ding, C., Geng, T., Choudhury, S., Barker, K., Li, A.: Evaluating Emerging AI/ML Accelerators: IPU, RDU, And NVIDIA/AMD GPUs. http://arxiv.org/abs/2311.04417 Accessed 2024-02-11 [63] Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  62. Xie, S., Gong, M., Xu, Y., Zhang, K.: Unaligned image-to-image translation by learning to reweight. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14154–14164. https://doi.org/10.1109/ICCV48922.2021.01391 . ISSN: 2380-7504 [64] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  63. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention Is All You Need. https://doi.org/10.48550/arXiv.1706.03762 . http://arxiv.org/abs/1706.03762 Accessed 2023-04-06 [65] Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  64. Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., Yan, J.: SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. https://doi.org/10.48550/arXiv.2306.10759 . http://arxiv.org/abs/2306.10759 Accessed 2024-02-29 [66] Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  65. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251. IEEE. https://doi.org/10.1109/ICCV.2017.244 . http://ieeexplore.ieee.org/document/8237506/ Accessed 2022-06-15 [67] Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  66. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–14022. https://doi.org/10.1109/ACSSC.2003.1292216 . https://ieeexplore.ieee.org/document/1292216 Accessed 2023-10-30 [68] Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  67. Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., Smolley, S.P.: Least Squares Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.1611.04076 . http://arxiv.org/abs/1611.04076 Accessed 2023-12-19 [69] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  68. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. https://doi.org/10.48550/arXiv.1412.6980 . http://arxiv.org/abs/1412.6980 Accessed 2023-12-19 [70] Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  69. Cunningham, R., Jia, S., Purohit, K., Salem, O., Hui, N.S., Lin, Y., Carragher, N.O., Hansen, C.G.: YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations 13(2), 1190 https://doi.org/10.1002/ctm2.1190 . Accessed 2024-02-08 [71] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  70. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv. version: 3. http://arxiv.org/abs/1611.07004 Accessed 2023-11-07 [72] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  71. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-Attention Generative Adversarial Networks. arXiv. http://arxiv.org/abs/1805.08318 Accessed 2023-11-09 [73] Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  72. Yang, S., Jiang, L., Liu, Z., Loy, C.C.: GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation. arXiv. version: 1. http://arxiv.org/abs/2306.04636 Accessed 2023-07-01 [74] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  73. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html Accessed 2024-01-14 Fang et al. [2019] Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019) Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)
  74. Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geoscience and Remote Sensing Letters 16(7), 1115–1119 (2019)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com